{-# OPTIONS --safe #-}
module Cubical.Categories.Functor.Base where

open import Cubical.Foundations.Powerset
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset

open import Cubical.Data.Sigma

open import Cubical.Categories.Category

private
  variable
    ℓC ℓC' ℓD ℓD' : Level

record Functor (C : Category ℓC ℓC') (D : Category ℓD ℓD') :
         Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where
  no-eta-equality

  open Category

  field
    F-ob  : C .ob  D .ob
    F-hom : {x y : C .ob}  C [ x , y ]  D [ F-ob x , F-ob y ]
    F-id  : {x : C .ob}  F-hom (C .id)  D .id {x = F-ob x}
    F-seq : {x y z : C .ob} (f : C [ x , y ]) (g : C [ y , z ])
           F-hom (f ⋆⟨ C  g)  (F-hom f) ⋆⟨ D  (F-hom g)

  isFull = (x y : _) (F[f] : D [ F-ob x , F-ob y ])  ∃[ f  C [ x , y ] ] F-hom f  F[f]
  isFaithful = (x y : _) (f g : C [ x , y ])  F-hom f  F-hom g  f  g
  isFullyFaithful = (x y : _)  isEquiv (F-hom {x = x} {y = y})
  isEssentiallySurj = (d : D .ob)  ∃[ c  C .ob ] CatIso D (F-ob c) d

  -- preservation of commuting squares and triangles
  F-square : {x y u v : C .ob}
             {f : C [ x , y ]} {g : C [ x , u ]}
             {h : C [ u , v ]} {k : C [ y , v ]}
            f ⋆⟨ C  k  g ⋆⟨ C  h
            (F-hom f) ⋆⟨ D  (F-hom k)  (F-hom g) ⋆⟨ D  (F-hom h)
  F-square Csquare = sym (F-seq _ _) ∙∙ cong F-hom Csquare ∙∙ F-seq _ _

  F-triangle : {x y z : C .ob}
               {f : C [ x , y ]} {g : C [ y , z ]} {h : C [ x , z ]}
              f ⋆⟨ C  g  h
              (F-hom f) ⋆⟨ D  (F-hom g)  (F-hom h)
  F-triangle Ctriangle = sym (F-seq _ _)  cong F-hom Ctriangle

private
  variable
     ℓ' : Level
    B C D E : Category  ℓ'

open Category
open Functor

Functor≡ : {F G : Functor C D}
          (h :  (c : ob C)  F-ob F c  F-ob G c)
          (∀ {c c' : ob C} (f : C [ c , c' ])  PathP  i  D [ h c i , h c' i ]) (F-hom F f) (F-hom G f))
          F  G
F-ob (Functor≡ hOb hHom i) c = hOb c i
F-hom (Functor≡ hOb hHom i) f = hHom f i
F-id (Functor≡ {C = C} {D = D} {F = F} {G = G} hOb hHom i) =
  isProp→PathP  j  isSetHom D (hHom (C .id) j) (D .id)) (F-id F) (F-id G) i
F-seq (Functor≡ {C = C} {D = D} {F = F} {G = G} hOb hHom i) f g =
  isProp→PathP  j  isSetHom D (hHom (f ⋆⟨ C  g) j) ((hHom f j) ⋆⟨ D  (hHom g j))) (F-seq F f g) (F-seq G f g) i

FunctorSquare :
  {F₀₀ F₀₁ F₁₀ F₁₁ : Functor C D}
  (F₀₋ : F₀₀  F₀₁) (F₁₋ : F₁₀  F₁₁)
  (F₋₀ : F₀₀  F₁₀) (F₋₁ : F₀₁  F₁₁)
   Square (cong F-ob F₀₋) (cong F-ob F₁₋) (cong F-ob F₋₀) (cong F-ob F₋₁)
   Square F₀₋ F₁₋ F₋₀ F₋₁
FunctorSquare {C = C} {D = D} F₀₋ F₁₋ F₋₀ F₋₁ r = sqr
  where
  sqr : _
  sqr i j .F-ob = r i j
  sqr i j .F-hom {x = x} {y = y} f =
    isSet→SquareP  i j  D .isSetHom {x = sqr i j .F-ob x} {y = sqr i j .F-ob y})
     i  F₀₋ i .F-hom f)  i  F₁₋ i .F-hom f)  i  F₋₀ i .F-hom f)  i  F₋₁ i .F-hom f) i j
  sqr i j .F-id {x = x} =
    isSet→SquareP  i j  isProp→isSet (D .isSetHom (sqr i j .F-hom (C .id)) (D .id)))
     i  F₀₋ i .F-id)  i  F₁₋ i .F-id)  i  F₋₀ i .F-id)  i  F₋₁ i .F-id) i j
  sqr i j .F-seq f g =
    isSet→SquareP  i j 
      isProp→isSet (D .isSetHom (sqr i j .F-hom (f ⋆⟨ C  g)) ((sqr i j .F-hom f) ⋆⟨ D  (sqr i j .F-hom g))))
     i  F₀₋ i .F-seq f g)  i  F₁₋ i .F-seq f g)  i  F₋₀ i .F-seq f g)  i  F₋₁ i .F-seq f g) i j

FunctorPath≡ : {F G : Functor C D}{p q : F  G}  cong F-ob p  cong F-ob q  p  q
FunctorPath≡ {p = p} {q = q} = FunctorSquare p q refl refl


-- Helpful notation

-- action on objects
infix 30 _⟅_⟆
_⟅_⟆ : (F : Functor C D)
      C .ob
      D .ob
_⟅_⟆ = F-ob

-- action on morphisms
infix 30 _⟪_⟫ -- same infix level as on objects since these will never be used in the same context
_⟪_⟫ : (F : Functor C D)
       {x y}
      C [ x , y ]
      D [(F  x ) , (F  y )]
_⟪_⟫ = F-hom


-- Functor constructions

𝟙⟨_⟩ :  (C : Category  ℓ')  Functor C C
𝟙⟨ C  .F-ob x    = x
𝟙⟨ C  .F-hom f   = f
𝟙⟨ C  .F-id      = refl
𝟙⟨ C  .F-seq _ _ = refl

Id : {C : Category  ℓ'}  Functor C C
Id = 𝟙⟨ _ 

forgetΣPropCat : (C : Category  ℓ') (prop :  (C .ob))  Functor (ΣPropCat C prop) C
forgetΣPropCat _ _ .F-ob x    = x .fst
forgetΣPropCat _ _ .F-hom f   = f
forgetΣPropCat _ _ .F-id      = refl
forgetΣPropCat _ _ .F-seq _ _ = refl

-- functor composition
funcComp :  (G : Functor D E) (F : Functor C D)  Functor C E
(funcComp G F) .F-ob c    = G  F  c  
(funcComp G F) .F-hom f   = G  F  f  
(funcComp G F) .F-id      = cong (G ⟪_⟫) (F .F-id)  G .F-id
(funcComp G F) .F-seq f g = cong (G ⟪_⟫) (F .F-seq _ _)  G .F-seq _ _

infixr 30 _∘F_
_∘F_ : Functor D E  Functor C D  Functor C E
_∘F_ = funcComp

-- hacky lemma to stop Agda from computing too much
funcCompOb≡ :  (G : Functor D E) (F : Functor C D) (c : ob C)
             funcComp G F .F-ob c  G .F-ob (F .F-ob c)
funcCompOb≡ G F c = refl

_^opF : Functor C D  Functor (C ^op) (D ^op)
(F ^opF) .F-ob      = F .F-ob
(F ^opF) .F-hom     = F .F-hom
(F ^opF) .F-id      = F .F-id
(F ^opF) .F-seq f g = F .F-seq g f


-- Functoriality on full subcategories defined by propositions
ΣPropCatFunc : {P :  (ob C)} {Q :  (ob D)} (F : Functor C D)
              (∀ c  c  P  F .F-ob c  Q)
              Functor (ΣPropCat C P) (ΣPropCat D Q)
F-ob (ΣPropCatFunc F FPres) (c , c∈P) = F .F-ob c , FPres c c∈P
F-hom (ΣPropCatFunc F FPres) = F .F-hom
F-id (ΣPropCatFunc F FPres) = F .F-id
F-seq (ΣPropCatFunc F FPres) = F .F-seq