{-# OPTIONS --safe #-}
module Cubical.Relation.Binary.Extensionality where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary.Base
module _ {ℓ ℓ'} {A : Type ℓ} (_≺_ : Rel A A ℓ') where
≡→≺Equiv : (x y : A) → x ≡ y → ∀ z → (z ≺ x) ≃ (z ≺ y)
≡→≺Equiv _ _ p z = substEquiv (z ≺_) p
isWeaklyExtensional : Type _
isWeaklyExtensional = ∀ {x y} → isEquiv (≡→≺Equiv x y)
isPropIsWeaklyExtensional : isProp isWeaklyExtensional
isPropIsWeaklyExtensional = isPropImplicitΠ2 λ _ _ → isPropIsEquiv _